

BIRD ID#:	 123.2
ISSUE TITLE: IBIS-AMI New Reserved Parameters for Jitter/Noise
AUTHOR: 	 Walter Katz, Mike Steinberger, Todd Westerhoff, SiSoft
DATE SUBMITTED: October 20, 2010
DATE REVISED: April 14, 2011
DATE ACCEPTED BY IBIS OPEN FORUM:

STATEMENT OF THE ISSUE:

Model developers and EDA vendors building IBIS-AMI models using the IBIS 5.0 specification have come across a number of modeling issues that are not addressed in IBIS 5.0. In order to deliver models and EDA tools that meet end-user demands for model accuracy and functionality, EDA vendors have defined "extensions" to add new capabilities to IBIS-AMI models. Unfortunately, EDA vendors have had to use proprietary (and different) syntax to add these capabilities to models, limiting model portability between different EDA tools.

This BIRD proposes new syntax for the .ami control file that improves model functionality and accuracy. Including this syntax in the IBIS standard will allow creation of accurate, compliant IBIS-AMI models that are readily portable between commercial EDA simulators.

The parameters defined in this document are to be added in Section 6c of the
IBIS 5.0 specification as new Reserved_Parameters.

Jitter, Noise and Clock Modeling
Tx_Rj, Tx_Sj, Tx_Sj_frequency, Rx_Clock_Recovery_Mean, Rx_Clock_Recovery_Rj,
Rx_Clock_Recovery_Sj, Rx_Clock_Recovery_DCD, Rx_Rj, Rx_Sj, Rx_DCD, Rx_Noise,
Rx_External_Reference

The following parameter exists in the IBIS 5.0 specification but its definition is replaced using the text in this BIRD:

Tx_DCD

On page 146 replace:

| Tx_DCD:
|
| Tx_DCD (Transmit Duty Cycle Distortion) can be of Usage Info
| and Out. It can be of Type Float and UI and can have Data
| Format of Value, Range and Corner. It tells the EDA platform
| the maximum percentage deviation of the duration of a
| transmitted pulse from the nominal pulse width. Example of
| TX_DCD declaration is:
|
| (Tx_DCD (Usage Info)(Type Float)
| (Format Range <typ> <min> <max>))

with:

| Tx_DCD:
|
| Tx_DCD (Transmit Duty Cycle Distortion) can be of Usage Info
| or Out. It can be of Type Float and UI and can have Data
| Format of Value, Range and Corner. It defines half the peak
| to peak clock duty cycle distortion, in seconds or UI, to be
| added to the behavior implemented directly by the transmitter
| model.
|
| Example of TX_DCD declaration is:
|
| (Tx_DCD (Usage Info)(Corner 0.008 0.016 0.005)(Type UI)
| (Description "TX Duty Cycle Distortion in UI.")
|)

Time(n)=n*bit_time+Tx_DCD*(-1)n
Time(n) is the time of the nth possible transition.
Note that all equations using jitter parameters that can be defined as UI shall be assumed to seconds in these formulae.

The following text is added immediately before Table 1 on page 148: Jitter, Noise and Clock Parameters

The following optional Reserved Parameters are used to specify impairments for the transmitter output. These budgets specify the impairment as measured at the TX output (i.e. the transmitter output is expected to be directly modulated by these amounts). This data is used by the simulator to either modify the input presented to the algorithmic model or when post-processing the results from the model; the budget values specified by these parameters are not passed directly to the model itself.

"Tx_Rj" is an AMI parameter of Type either Float or UI and Usage either Info or Out which defines the standard deviation, in seconds or UI, of an uncorrelated Gaussian phase noise process at the transmitter which is to be added to the behavior implemented directly by the transmitter model. *	Comment by wkatz: I suggest you propose a new method to fine a Jitter Spectrum as a separate BIRD.
I think specifying this as a Gaussian Distribution is mathematically precise.	Comment by Vladimir Dmitrev-Zdorov: No, not the new BIRD. I would vote for adding the word “uncorrelated” applied to Gaussian phase noise. Gaussian ‘sigma’ defines the distribution, but not the process.	Comment by Dmitriev-Zdorov, Vladimir: What about jitter spectrum? Since Tx jitter interacts with pattern in a non-linear way, the result will depend on the jitter’s spectal content. At least, it is as important as frequency of the sine jitter. We should either state that this is a fast uncorrelated jitter or provide any mechanism to describe colored jitter. If the latter, we need at minimum to specify the cut off frequency of the 1-st order model.

Example:

 (Tx_Rj (Usage Info)(Corner 0.005 0.006 0.004)(Type UI)
 (Description "TX Random Jitter in UI.")

Time(n)=n*bit_time+Tx_Rj*gaussian_rand()
gaussian_rand() is a function that returns floating point numbers between –inf and _inf. The distribution of these numbers shall be an uncorrelated Gaussian distribution centered at zero with a Sigma of 1.a Gaussian
 distribution centered at 0, with a Sigma=1.

"Tx_Sj" is an AMI parameter of Type either Float or UI and Usage either Info or Out which defines half the peak to peak amplitude, in seconds or UI, of a sinusoidal jitter which is to be added to the behavior implemented directly by the transmitter model.

Example:

 (Tx_Sj (Usage Info)(Corner 0.05 0.07 0.4)(Type UI)
 (Description "TX Sinusoidal Jitter in UI.")
)

"Tx_Sj_frequency" is an AMI parameter of Type Float and Usage either Info or Out which defines the frequency, in Hertz, of the sinusoidal jitter at the transmitter.

Example:

 (Tx_Sj_Frequency (Usage Info)(Corner 6.5E7 6.5E7 6.5E7)(Type UI)
 (Description "TX Sinusoidal Jitter Frequency in Hz.")
)

Time(n)=n*bit_time+Tx_Sj*sin((n*bit_time*2*Pi)*Tx_Sj_Frequency)

The following optional Reserved Parameters are used to specify characteristics of the receiver’s recovered clock when the model does not return clock_ticks information from an AMI_Getwave call. This data is used by the simulator when post-processing the results from the model; the budget values specified by these parameters are not passed directly to the model itself.

"Rx_Clock_Recovery_Mean" is an AMI parameter of Type either Float or UI and Usage either Info or Out which defines a static offset, in seconds or UI, between the recovered clock and the median threshold crossing time * in the eye diagram plus one half bit period.	Comment by wkatz: Rx_Clock_Recovery_Mean is used in conjunction with Rx_Clock_Recovery_Rj. The mean and median of a Gaussian distribution are identical.

Example:

 (Rx_Clock_Recovery_Mean (Usage Info)(Value 0.05)
 (Type UI)(Description "Recovered Clock offset in UI.")
)

actual_time=ideal_time+Rx_Clock_Recovery_Mean
ideal_time is determined by EDA tool from eye generated from
impulse response output of Rx_Init

"Rx_Clock_Recovery_Rj" is an AMI parameter of Type either Float or UI and Usage either Info or Out which defines the standard deviation, in seconds or UI, of a Gaussian phase noise exhibited by the recovered clock.

Example:

 (Rx_Clock_Recovery_Rj (Usage Info)(Corner 0.005 0.006 0.004)
 (Type UI)(Description "RX Random Clock Jitter in UI.")
)

actual_time=ideal_time+Rx_Clock_Recovery_Rj*gaussian_rand()

"Rx_Clock_Recovery_Sj" is an AMI parameter of Type either Float or UI and Usage either Info or Out which defines half the peak to peak variation, in seconds or UI, of a sinusoidal phase noise exhibited by the recovered clock.

Example:

 (Rx_Clock_Recovery_Sj (Usage Info)(Corner 0.05 0.07 0.4)(Type UI)
 (Description "RX Sinusoidal Jitter in UI."))

The following distribution shall be used if the Rx_Sj_Frequency is not defined.

clock_times(n)=clock_times(n)+Rx_Clock_Recovery_Sj*sin(Pi*rand())
rand()is a function that returns floating point numbers between –.5 and +.5. The distribution of these numbers shall be an uncorrelated uniform distribution between -.5 and .5. Returns random numbers between -.5 and +.5

Jitter PDF(dt) = 1/sqrt(1-(dt/Rx_Sj)^2)
 (Note: Dual-Dirac)
I I I I
 I I I I
 I I I I
 I I I I
 I--------------I

I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
I

"Rx_Clock_Recovery_Sj_frequency" is an AMI parameter of Type Float and Usage either Info or Out which defines the frequency, in Hertz, of the sinusoidal phase noise driven by impairments external to the receiver.

Example:

 (Rx_Clock_Recovery_Sj_frequency (Usage Info)
 (Corner 6.5E7 6.5E7 6.5E7)(Type Float)
 (Description "Rx Clock Recovery Sinusoidal Jitter Frequency in Hz.")
)

 clock_times(n)=clock_times(n)+Rx_Sj*sin(clock_times(n)*2*Pi*Rx_Sj_Frequency)

"Rx_Clock_Recovery_DCD" is an AMI parameter of Type either Float or UI and Usage either Info or Out which defines half the peak to peak variation, in seconds or UI, of a clock duty cycle distortion exhibited by the recovered clock.	Comment by wkatz: No
Yes	Comment by Vladimir Dmitrev-Zdorov: OK, can live with it	Comment by Dmitriev-Zdorov, Vladimir: Does not provide unambiguous definition.
Post processing: for Statistical simulation, is this the same as convolution with Tdcd double delta PDF?
For time domain simulation: is it the same as modifying the ‘ideal’ clocks by adding Tdcd*(-1)^n ?

Example:

 (Rx_Clock_Recovery_DCD (Usage Info)(Corner 0.008 0.016 0.005)
 (Type UI)(Description "RX Duty Cycle Distortion in UI.")
)

actual_time=ideal_time+Rx_Clock_Recovery_DCD*(-1)n

The following optional Reserved Parameters are used to modify the statistics associated with receiver’s recovered clock when the model returns clock ticks information from an AMI_Getwave call. This data is used by the simulator when post-processing the results from the model; the budget values specified by these parameters are not passed directly to the model itself. Rx_Rj, Rx_DCD, Rx_Sj and Rx_Sj_Frequency represent the jitter associated with the CDR reference Clock. These impairments external to the receiver that are input to the RX CDR, but are not included in the CDR clock_times output. This number can represent either the reference clock jitter, or a budgeted reference clock jitter.

"Rx_Rj" is an AMI parameter of Type either Float or UI and Usage either Info or Out which defines the standard deviation, in seconds or UI, of a Gaussian phase noise driven by impairments external to the receiver that are input to the RX CDR, but are not included in the CDR clock_times output. This phase noise is to be accounted for in both Statistical and Time-Domain simulations. 	Comment by Dmitriev-Zdorov, Vladimir: Similar notes should be given to similar parameters – described above - when Rx does not return clocks. Do all of them also apply to both time domain and statistical simulation, or not?
	Comment by Vladimir Dmitrev-Zdorov: The Note helps a bit, but can we add a few words into this note as shown below?	Comment by wkatz: Why does not the Note below specify this precisely:
Note:
The "Clock Jitter Parameters" (Rx_Clock_PDF, Rx_Clock_Recovery_Mean, Rx_Clock_Recovery_Rj, Rx_Clock_Recovery_Sj, Rx_Clock_Recovery_DCD , should be used by the simulator when analyzing the output of Rx AMI_Init or Rx AMI_GetWave when Rx AMI_GetWave does not return clock_times. When Rx AMI_GetWave returns clock_times, the simulator should not use the "Clock Jitter Parameters". An Rx AMI_GetWave function should return clock_times, unless it is a Repeater, in which case the AMI_GetWave function may or may not return clock_times.

Example:

 (Rx_Rj (Usage Info)(Corner 0.005 0.006 0.004)(Type UI)
 (Description "RX Random Jitter in UI.")
)

clock_times(n)=clock_times(n)+Rx_Rj *gaussian_rand()
clock_times(n) is the times returned by Rx AMI_Getwave

"Rx_Sj" is an AMI parameter of Type either Float or UI and Usage either Info or Out which defines half the peak to peak variation, in seconds or UI, of a sinusoidal phase noise driven by impairments external to the receiver that are input to the RX CDR, but are not included in the CDR clock_times output. This phase noise is to be accounted for in both Statistical and Time-Domain simulations.

 (Rx_Sj (Usage Info)(Corner 0.05 0.07 0.04)(Type UI)
 (Description "RX Sinusoidal Jitter in UI.")
)
The following distribution shall be used if the Rx_Sj_Frequency is not defined.

clock_times(n)=clock_times(n)+Rx_Sj*sin(Pi*rand())
rand() Returns random numbers between -.5 and +.5

Jitter PDF(dt) = 1/sqrt(1-(dt/Rx_Sj)^2)
 (Note: Dual-Dirac)
I I I I
 I I I I
 I I I I
 I I I I
 I--------------I
"Rx_Sj_frequency" is an AMI parameter of Type Float and Usage either Info or Out which defines the frequency, in Hertz, of the sinusoidal phase noise driven by impairments external to the receiver that are input to the RX CDR, but are not included in the CDR clock_times output.

Example:

 (Rx_Sj_Frequency (Usage Info)(Corner 6.5E7 6.5E7 6.5E7)(Type Float)
 (Description "Rx Sinusoidal Jitter Frequency in Hz.")
)

 clock_times(n)=clock_times(n)+Rx_Sj*sin(clock_times(n)*2*Pi*Rx_Sj_Frequency)

"Rx_DCD" is an AMI parameter of Type either Float or UI and Usage either Info or Out which defines half the peak to peak variation, in seconds or UI, of a clock duty cycle distortion driven by impairments external to the receiver.
This phase noise is to be accounted for in both Statistical and Time-Domain simulations.

Example:

 (Rx_DCD (Usage Info)(Corner 0.008 0.016 0.005)(Type UI)
 (Description "RX Duty Cycle Distortion in UI.")
)

clock_times(n)=clock_times(n)+Rx_DCD*(-1)n

"Rx_External_Reference_Clock" is an AMI parameter of Type Boolean and Usage In that when True tells the model that when calling AMI_GetWve the clock_times vector shall contain the transition times of an externally generated reference clock. The model shall use the times as the reference clock for the Clock Data Recovery model in the AMI_GetWave function. This parameter is optional.

Example:

(Rx_External_Reference_Clock(List True False)(Type Boolean)(Usage In)
 (Description "This model uses an external reference clock))

The following optional Reserved Parameter is used to modify the statistics associated with the data input to the receiver’s sampling latch. This data is used by the simulator when post-processing the results from the model; the budget values specified by this parameter are not passed directly to the model itself.

"Rx_Noise" is an AMI parameter of Type Float and Usage either Info or Out which defines the standard deviation, in volts into a 100 ohm differential load, of a set of independent samples of a Gaussian noise process measured at the sampling latch of a receiver.

Example:

 (Rx_Noise (Usage Info)(Format Corner 0.0030 0.0035 0.0025) (Type Float)
 (Description "RX amplitude noise at sampling latch in V.")
)

wave(t)=wave(t)+Rx_Noise*gaussian_rand()
wave(t) is the waveform returned by Rx AMI_GetWave

Note:
The "Clock Jitter Parameters" (Rx_Clock_PDF, Rx_Clock_Recovery_Mean, Rx_Clock_Recovery_Rj, Rx_Clock_Recovery_Sj, Rx_Clock_Recovery_DCD , should be used by the simulator when analyzing the output of Rx AMI_Init (for statistical analysis) or Rx AMI_GetWave (time domain) when Rx AMI_GetWave does not return clock_times. When Rx AMI_GetWave returns clock_times, the simulator should not use the "Clock Jitter Parameters". An Rx AMI_GetWave function should return clock_times, unless it is a Repeater, in which case the AMI_GetWave function may or may not return clock_times.

[bookmark: _GoBack]Note:
The EDA Tool/Simulator shall use the values of these Jitter and Noise parameters directly if they are Usage Info. If they are Usage Out, then the EDA Tool/Simulator shall use their values generated by AMI_Init. The model’s AMI_GetWave function may return different values for these parameters than the values returned by AMI_Init; the EDA Tool/Simulator may report the values of such parameters to the user, but the EDA Tool/Simulator may not change any inputs to AMI models or change other result of the simulation based on the values returned for the parameters in this BIRD by AMI_GetWave.

Note:
When both an Sj and Sj_Frequency is specified the time difference between the ideal and actual occurrence is defined by a sinusoidal function of time with a peak value of Sj and a frequency of Sj_Frequency. When an Sj is specified, and Sj_Frequency is not specified the time difference between the ideal and actual occurrence is defined by a sinusoidal function of time with a peak value of Sj at any frequency though avoiding commensurable ratios between S_j_Frequency and base frequency.

ANALYSIS PATH/DATA THAT LED TO SPECIFICATION

The parameters defined in this BIRD came from commercial IBIS-AMI model development efforts where new functionality was needed to meet customer expectations for model functionality, accuracy and performance. The parameters in this BIRD were defined by SiSoft and its semiconductor partners. These parameters are being contributed to IBIS to ensure IBIS-AMI model accuracy and portability.

ANY OTHER BACKGROUND INFORMATION:

This BIRD is being requested by the following IBIS users and model developers, in conjunction with the authors:

Cisco Systems: Upen Reddy, Doug White
Ericsson: Anders Ekholm
Broadcom: Yunong Gan
IBM: Adge Hawes
TI: Alfred Chong, Srikanth Sundaram
